Interpolation of bilinear operators between quasi-Banach spaces
نویسنده
چکیده
We study interpolation, generated by an abstract method of means, of bilinear operators between quasi-Banach spaces. It is shown that under suitable conditions on the type of these spaces and the boundedness of the classical convolution operator between the corresponding quasi-Banach sequence spaces, bilinear interpolation is possible. Applications to the classical real method spaces, Calderón-Lozanovsky spaces, and Lorentz-Zygmund spaces are presented.
منابع مشابه
Analytic families of multilinear operators
We prove complex interpolation theorems for analytic families of multilinear operators defined on quasi-Banach spaces, with explicit constants on the intermediate spaces. We obtain analogous results for analytic families of operators defined on spaces generated by the Calderón method applied to couples of quasi-Banach lattices with nontrivial lattice convexity. As an application we derive a mul...
متن کاملArens regularity of bilinear forms and unital Banach module spaces
Assume that $A$, $B$ are Banach algebras and that $m:Atimes Brightarrow B$, $m^prime:Atimes Arightarrow B$ are bounded bilinear mappings. We study the relationships between Arens regularity of $m$, $m^prime$ and the Banach algebras $A$, $B$. For a Banach $A$-bimodule $B$, we show that $B$ factors with respect to $A$ if and only if $B^{**}$ is unital as an $A^{**}$-module. Le...
متن کاملHardy spaces , Real interpolation and Applications to bilinear operators
This paper can be considered as the sequel of [6], where the authors have proposed an abstract construction of Hardy spaces H. They shew an interpolation result for these Hardy spaces with the Lebesgue spaces. Here we describe a more precise result using the real interpolation theory and we clarify the use of Hardy spaces. Then with the help of the bilinear interpolation theory, we then give ap...
متن کاملUse of Abstract Hardy Spaces, Real Interpolation and Applications to Bilinear Operators
This paper can be considered as the sequel of [6], where the authors have proposed an abstract construction of Hardy spaces H. They shew an interpolation result for these Hardy spaces with the Lebesgue spaces. Here we describe a more precise result using the real interpolation theory and we clarify the use of Hardy spaces. Then with the help of the bilinear interpolation theory, we then give ap...
متن کاملThe Kalton Calculus
This article provides a glimpse at Nigel Kalton’s contribution to interpolation of Banach spaces. Examples and concepts which look unrelated at first sight, such as quasi-linear maps, non-trivial twisted sums and interpolating operators are shown to be relevant to the same theory.
متن کامل